If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-13=22
We move all terms to the left:
7x^2-13-(22)=0
We add all the numbers together, and all the variables
7x^2-35=0
a = 7; b = 0; c = -35;
Δ = b2-4ac
Δ = 02-4·7·(-35)
Δ = 980
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{980}=\sqrt{196*5}=\sqrt{196}*\sqrt{5}=14\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{5}}{2*7}=\frac{0-14\sqrt{5}}{14} =-\frac{14\sqrt{5}}{14} =-\sqrt{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{5}}{2*7}=\frac{0+14\sqrt{5}}{14} =\frac{14\sqrt{5}}{14} =\sqrt{5} $
| 0.02x=29 | | 4+5x-5=3x+9 | | 40=90+10x | | 4(x+7) = 48 | | 4f+f=2f | | 0.2x+0.2=-5x+5 | | 6c+2=8c | | m/4+ –18=–16= | | 25x+x=7+3+25x | | 2(x+1)=x+13 | | 2(20+x)=x+31 | | 2b+5=9 | | 2(14+x)=x+21 | | b=8+14 | | 3t/4+1/3(21-t)=1 | | 3x-13=2}x-5)-3 | | 4x+15=540 | | 4x-10=540 | | t+-8t=-21 | | 2x-4=2(2x-12) | | 12+6x-8=10x+6 | | 1+3x^2=10 | | 4(2y-20)+2y=720 | | 56=233-u | | 147=-u+221 | | 20-v=225 | | –(r+10)+–10=–14 | | 1x-5=-1.5x-1.5 | | 1/2(8x-16)-2x=32 | | 29=10-x+4x+1 | | F(x)=10x×8 | | 5x•15=2x |